BUILDING AIRTIGHTNESS BASICS

Diane Hubbard Green Footsteps

16 April 2020

CarbonCo-op

Diane Hubbard

Green Footsteps

- Energy assessment & calculations
- Air tightness & air movement in buildings (new and existing)
- Thermography
- Mechanical engineer
- Certified Passivhaus Consultant
- Level 2 Building Thermography
- NICEIC Domestic Ventilation

Infiltration

The uncontrolled flow of air through gaps and cracks in the building fabric

Illustration Hall (ed.) 2008

Infiltration - quantification

Why is airtightness important?

- Infiltration increases energy use
- Thermal bypass of insulation
- Moisture ingress into building fabric
- Ventilation system performance

Infiltration - quantification

Blower door test

- Permanent points of ventilation covered or closed
- Boiler flues, chimneys, extractors, trickle vents closed / taped

Air permeability

- Air flow per m² of dwelling envelope
- m³/hm² @50Pa

Air changes per hour

- Relates to the building volume
- ach @50Pa

Air permeability vs air change rate If both have an air change rate (ach of 5, which has the better air permeability?

Airtightness benchmarks

NB Air permeability vs air change rate

- ≤ 0.6 ach@50Pa Passivhaus
- 10m³/hm²@50Pa Limit for UK new build dwellings - tends to be used as benchmark
- 5m³/hm²@50Pa Typical major housebuilder (gas central heating)
- 3m³/hm²@50Pa Part F MVHR / MEV

Which building has the best air permeability?

How to achieve airtightness

- 1. Know where you are starting from
- 2. Decide what your target it is
- 3. Develop a strategy to achieve this
- 4. Workmanship and quality assurance on site to achieve your aim

How to achieve airtightness 1. Know where you are starting from

How to achieve airtightness 1. Know where you are starting from

How to achieve airtightness 2. Decide what your target is

How to achieve airtightness 3. Develop a strategy

- Design it in.
- It's not all about fancy materials

How to achieve airtightness 3. Develop a strategy 5:530

How to achieve airtightness 4. Workmanship and quality assurance on site to achieve your aim

- Workmanship on site control:
 - Clear goals and specification
 - Air tightness champion
 - individual worker responsibility
 - Avoid blame, emphasise importance of problems being corrected

How to achieve airtightness

- 1. Know where you are starting from
- 2. Decide what your target it is
- 3. Develop a strategy to achieve this
- 4. Workmanship and quality assurance on site to achieve your aim

More than airtightness...

Diane Hubbard

diane@greenfootstepscumbria.co.uk 01539 823119 07812 045445

